Numerical solutions of matrix differential models using cubic matrix splines II
نویسندگان
چکیده
منابع مشابه
Numerical solutions of matrix differential models using cubic matrix splines II
This paper presents the non-linear generalization of a previous work on matrix differential models [1]. It focusses on the construction of approximate solutions of first-order matrix differential equations Y ′ (x) = f (x,Y (x)) using matrix-cubic splines. An estimation of the approximation error, an algorithm for its implementation and illustrative examples for Sylvester and Riccati matrix diff...
متن کاملBernoulli matrix approach for matrix differential models of first-order
The current paper contributes a novel framework for solving a class of linear matrix differential equations. To do so, the operational matrix of the derivative based on the shifted Bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. An error estimation of presented method is provided. Numerical experiments are...
متن کاملUsing operational matrix for numerical solution of fractional differential equations
In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...
متن کاملbernoulli matrix approach for matrix differential models of first-order
the current paper contributes a novel framework for solving a class of linear matrix differential equations. to do so, the operational matrix of the derivative based on the shifted bernoulli polynomials together with the collocation method are exploited to reduce the main problem to system of linear matrix equations. an error estimation of presented method is provided. numerical experiments are...
متن کاملNUMERICAL SOLUTION OF INTEGRO-DIFFERENTIAL EQUATION BY USING CHEBYSHEV WAVELET OPERATIONAL MATRIX OF INTEGRATION
In this paper, we propose a method to approximate the solution of a linear Fredholm integro-differential equation by using the Chebyshev wavelet of the first kind as basis. For this purpose, we introduce the first Chebyshev operational matrix of integration. Chebyshev wavelet approximating method is then utilized to reduce the integro-differential equation to a system of algebraic equations. Il...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical and Computer Modelling
سال: 2007
ISSN: 0895-7177
DOI: 10.1016/j.mcm.2006.11.027